Effective Herbicide Control of *Phragmites*australis for the Restoration of a Native Plant Community

Keith Gazaille, *Senior Biologist* Aquatic Control Technology, Inc.

NEAEB
34th Annual Meeting *March 17, 2010*

Biological Control

- Currently no biological control agents are available for the control of *Phragmites* in North America.
- Research is on-going to evaluate European insect species that show herbivory on *Phragmites*.

Larvae of gall midge (Lasioptera hungarcia)

Adult Rhizedra lutosa moth

Why Manage *Phragmites* Growth?

- Rapidly colonizes and outcompetes native vegetation species.
- Reduces species diversity and richness by the formation of dense monotypic stands up to 200 stems/m² (Haslam, 1972).
- Impairs water flow and stormwater retention in inland wetlands.

Prescribed Burning

- Generally does not reduce Phragmites growth unless root burn occurs.
- Effectively removes Phragmites thatch and improves light penetration to soil.
- Most effective when used in conjunction with chemical treatment and/or flooding.

Covering with Plastic

Can be effective on a small scale, but labor intensive and non-selective.

 Plastic must remain intact for multiple growing season to exhaust rhizome reserves.

High soil temperatures impact native seed bank, which impair native plant recolonization.

Excavation/Disking

- Generally inappropriate on a large scale due to level of disturbance.
- Phragmites rhizomes can extend as much as two meters below ground.
- Activities that promote the breaking and/or cutting of the rhizomes have the potential increase *Phragmites* growth.

Mowing/Cutting

- Mowing at certain times of the year can increase stem density.
- Mowing just before flowering over multiple seasons can reduce stand vigor.
- Mowing alone does not provide long-term control, but is a critical component to the re-establishment of native species following herbicide treatment.

Manipulation of Water Level and Salinity

- Enhancement of natural tidal flushing can provide sustainable long-term control.
- Sufficient flooding of new *Phragmites* shoots can provide control, but most effective when performed in conjunction with cutting.
- Not applicable in all sites and expensive and labor intensive.

CHEMICAL CONTROL TECHNIQUES

Available Herbicides for Phragmites Control

ACTIVE TRADE NAME **MANUFACTURER** TYPE

INGREDIENT

Amino acid inhibitor Rodeo, Dow, SePRO, **Glyphosate**

AquaMaster, Monsanto

AquaPro, etc.

Amino acid inhibitor (AHAS) Habitat BASE **Imazapyr**

Amino acid inhibitor (AHAS) Clearcast **BASF Imazamox**

Auxin mimic SePRO, Dow Renovate 3, Triclopyr

Garlon 3a

Methods of Application

Phragmites Control Equipment

NEW ENGLAND CASE STUDIES

Briggs Marsh – Little Compton, RI

AQUATIC CONTROL TECHNOLOGY, INC

Proposed non-treatment areas of Phragmites growth along

growth, initially treated in 2000, to be included in future work

Remaining Phragmites to be spot-treated from original ~7.4 acres

treated in 1996, 1998 and 1999 Orthophoto Image Source: RIGIS & MIT

Proposed Treatment

Map for 2003 and Beyond

BRIGGS MARSH

Little compton, RI

 Phragmites infestation around coastal freshwater pond totaling ~12 acres.

- Initiated Rodeo herbicide spot-treatments in 1997.
- Treated with Airboat, but pond breaches to ocean regularly.
- Switched to Argo trackdriven amphibious vehicles.
- Infestation reduced to maintenance levels.
 - Converted to Habitat herbicide spot treatment in 2008 in an effort to approach eradication.

Briggs Marsh – Little Compton, RI

Lord's Cove (CT River) - Old Lyme, CT

- Dense tidal *Phragmites* infestation on CT River – approx. 200 acres.
- Initiated glyphosate herbicide treatment in 2000.
- Accessed and treated growth using low-ground pressure amphibious vehicles (Argo & Marsh Master).
- Mechanical cutting of treated areas in early spring following treatment.
- By 2004 infestation was reduced to a scattered 50 acres.

Butler Pond - Quincy, MA

- Contiguous band of *Phragmites* growth around small pond.
- Treated with glyphosate from Jon boat with elevated spray tower in late August 2000.
- Removed dead stalks and root mat with mechanical hydro-rake in late November 2000.

Mikill Pond – Westerly, RI

- Contiguous band of *Phragmites* growth around coastal non-tidal pond – approx. 1 acre.
- Initiated glyphosate herbicide treatment in 2004.
- Accessed and treated growth using Panther airboat with elevated spray tower.
- Manual cutting during winter following treatment with removal of cut
- Scattered regrowth of less then 0.25 acre spot-treated in 2005 with back-pack sprayers.

Victory Road State Park - Boston, MA

DORCHESTER SHORES
RESERVATION

Victory Road Park - Boston, MA

MA DCR Aquatic Invasive Species
Control Program

PIGURE: SURVEY DATE MAP DATE
11 6/19/07 8/7/07

Legend:

AQUATIC CONTROL TECHNOLOGY, NC.

1/ SPH FROM
SUTTON, MSSACHUSET IS 1989
PLONE (1998 46-1200)
PARIC (1998 46-1200)

- Fragmented *Phragmites* infestation around small island park in Boston Harbor – approx. 1 acre.
- Initiated glyphosate herbicide spot-treatments in 2008.
- Treated entire infestation with low-volume back-pack sprayers.
- Performed manual cutting during winter following glyphosate treatment.
- Immature regrowth treated with triclopyr (Renovate) in spring of 2009.
- Greater than 90% Phragmites control achieved with excellent native plant recolonization.

Victory Road State Park - Boston, MA

